metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

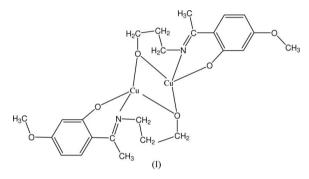
Tong-Tao Xu,^a Xing-You Xu,^b Lu-De Lu,^a* Jia Ni^c and Xu-Jie Yang^a

 ^aMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China,
^bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ^cCentral Laboratory of Shantou University, Shantou 515062, People's Republic of China

Correspondence e-mail: xutongtao_1968@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.053 wR factor = 0.144 Data-to-parameter ratio = 13.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{µ-(*E*)-5-methoxy-2-[1-(3-oxidopropyl-ideneamino)ethyl]phenolato}copper(II)

The title dimeric Cu^{II} complex, $[Cu_2(C_{12}H_{15}NO_3)_2]$, is centrosymmetric. Two Cu^{II} atoms related by an inversion center are bridged by two O atoms of propanolamine. The Cu^{II} atom assumes a distorted square-planar geometry.

Comment

Paeonol, or 2-hydroxy-4-methoxyacetophenone, is an effective component of Chinese traditional medicines. As part of our ongoing investigation on Schiff base compounds of paeonol, we present here the structure of the title Cu^{II} complex, (I).

The molecular structure of (I) is shown in Fig. 1. While the 5-methoxy-2-[1-(3-oxidopropylideneamino)ethyl]phenolate dianion chelates to an individual Cu^{II} atom through the amino and two diprotonated hydroxy groups, the deprotonated hydroxy atom O3 bridges two Cu^{II} atoms, forming a centro-symmetric dimeric complex. The Cu^{II} atom assumes a distorted square-planar coordination (Table 1). Within the dimeric complex, the $Cu \cdot Cu$ separation is 3.0299 (11) Å.

Experimental

To a stirred solution of paeonol (1.0 mmol) and $\text{Cu}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$ (1.0 mmol) in 25 ml absolute methanol was added dropwise a solution of propanolamine (1.0 mmol) in 10 ml absolute methanol at room temperature. After stirring for 3 h at 320 K, the resulting precipitate was filtered off, washed with methanol and dried *in vacuo*. Single crystals of (I) were obtained by slow evaporation of the filtrate after 5 d.

Crystal data $\begin{bmatrix} Cu_2(C_{12}H_{15}NO_3)_2 \end{bmatrix}$ $M_r = 569.6$ Monoclinic, $P2_1/c$ a = 6.774 (1) Å b = 6.703 (1) Å c = 25.775 (4) Å $\beta = 95.493$ (2)° V = 1165.1 (3) Å³

Z = 2 $D_x = 1.624 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 1.87 \text{ mm}^{-1}$ T = 293 (2) K Prism, blue $0.21 \times 0.08 \times 0.05 \text{ mm}$ Received 25 April 2006 Accepted 20 May 2006

© 2006 International Union of Crystallography All rights reserved Data collection

Bruker SMART APEX areadectector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.695, T_{\max} = 0.912$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.144$ S = 1.052034 reflections 156 parameters H-atom parameters constrained 5982 measured reflections 2034 independent reflections 1788 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.0738P)^2 \\ &+ 3.3311P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1


Selected geometric parameters (Å, °).

Cu1-O1	1.873 (3)	N1-C8	1.302 (6)
Cu1-O3 ⁱ	1.935 (3)	N1-C10	1.475 (6)
Cu1-O3	1.912 (3)		
O1-Cu1-O3 ⁱ	92.16 (15)	O3-Cu1-N1	98.56 (16)
O1-Cu1-O3	167.99 (15)	O3 ⁱ -Cu1-N1	174.31 (16)
O1-Cu1-N1	93.28 (16)	Cu1 ⁱ -O3-Cu1	103.93 (16)
$O3^i$ -Cu1-O3	76.07 (16)		

Symmetry code: (i) -x, -y, -z.

Methyl H atoms were placed in calculated positions, with C–H = 0.96 Å, and torsion angles were refined to fit the electron density $[U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})]$. Other H atoms were positioned geometrically, with C–H = 0.93 (aromatic) and 0.97 Å (methylene), and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids [symmetry code: (i) -x, -y, -z]. H atoms have been omitted.

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The work was supported by the Key Laboratory of Marine Biotechnology of Jiangsu Province.

References

Bruker (2003). SAINT (Version 6.45A) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen,Germany.

- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen,-Germany.